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We describe a mechanism leading to positive entropy production in volume- 
preserving systems under nonequilibrium conditions. We consider volume- 
preserving systems sustaining a diffusion process like the multibaker map or the 
Lorentz gas. A continuous flux of particles is imposed across the system resulting 
in a steady gradient of concentration. In the limit where such flux boundary 
conditions are imposed at arbitrarily separated boundaries for a fixed gradient, 
the invariant measure becomes singular. For instance, in the multibaker map, 
the limit invariant measure has a cumulative function given in terms of the non- 
differentiable Takagi function. Because of this singularity of the invariant 
measure, the entropy must be defined as a coarse-grained entropy instead of the 
fined-grained Gibbs entropy, which would require the existence of a regular 
measure with a density. The coarse-grained entropy production is then shown 
to be asymptotically positive and, moreover, given by the entropy production 
expected from irreversible thermodynamics. 

KEY WORDS: Entropy production; flux boundary conditions; non- 
equilibrium steady state; singular measure; multibaker map; Takagi function. 

I. I N T R O D U C T I O N  

The problem of entropy production is one of the oldest open questions in 
nonequilibrium statistical mechanics. It originates from the confrontation 
between the thermodynamics of irreversible processes and the classical or 
quantum mechanics which describe the motion of atoms and molecules in 
matter. Classical mechanics is reversible and preserves volumes in phase 
space according to Liouville's theorem. Both of these properties seem to be 
in contradiction with irreversible thermodynamics. 
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Recently, several works have been devoted to the problem of our 
understanding of the entropy production and of the 2nd law of thermo- 
dynamics in the context of the theory of determinislic dynamical 
systems.(t-8) It is a difficult problem because it is well know that an entropy 
like the Gibbs entropy 

S~(t) = -- fr dX ft(X) In f,(X) ( 1 ) 

remains constant during the time evolution of the probability densityft(X) 
in closed volume-preserving systems. For a deterministic system, the 
motion of all the particles is governed by a set of differential equations of 
first order in time 

=F(x) (2) 

where F(X) is a vector field defined in the phase space F of the positions 
and momenta X. In volume-preserving systems, there exists an absolutely- 
continuous invariant measure which is the Liouville measure dX. A statisti- 
cal ensemble of copies of the system is defined by a probability measure v, 
which should be absolutely continuous with respect to the Liouville 
measure for the corresponding probability density to exist as f , (X)=  
dv,/dX. This probability density evolves in time according to the 
(generalized) Liouville equation which expresses the local conservation of 
probability in phase space: 

% f,(x)  + 8,, .  [ f , (x)  F(x) ]  = o (3) 

where 8x denotes the gradient with respect to all the phase-space 
variables X. The time evolution of the probability density induces a time 
evolution for the Gibbs entropy according to 

dS~_dt fardA'J'~+fr d x a s c "  (4) 

which is expressed in terms of the Gibbs entropy current and entropy source 

Jsc = ( - f i n  f )  F (5) 

as(~ = f 8 x '  F (6) 

The first term in Eq. (4) is the flow of entropy at the boundaries of the 
phase space. The second term is the average value of the divergence of 
the vector field (2). In a conservative system, this divergence vanishes, 
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0x �9 F = 0, and trsc = 0. Hence, the second term vanishes in Eq. (4) so that 
the time variation of the Gibbs entropy dSc/dt is only due to the boundary 
conditions. In a closed system or in a steady state, the entropy current 
vanishes at the boundaries so that the Gibbs entropy is constant. 

These properties of the Gibbs entropy contradict the properties 
expected for an entropy in the thermodynamics of irreversible pro- 
cesses)9 12~ If we had to identify the Gibbs entropy (1) with the thermo- 
dynamic entropy as it is the case in equilibrium statistical mechanics we 
would face the famous problem that the entropy production should 
vanish for the class of conservative systems in contradiction with the 
phenomenology. Over the last few years, several propositions have been 
discussed in the literature to overcome this famous problem. 

Mackey has proposed that a positive entropy production should have 
its origin in the property of exactness of dynamical systems. 113) Exact 
dynamical systems are defined as discrete-time systems, Xt+~ =~(Xt),  
which are expanding [0x~[ >/1. The expansiveness is compatible with a 
finite phase space if the mapping �9 sends several different points X onto 
the same point ~(X). If entropy is conceived as a measure of disorder in 
phase space we understand that there is a loss of information and thus 
production of disorder in such systems. In flows, the property of exactness 
should be expressed by the assumption that 0x �9 F ~> 0 which means that 
the flow is expanding. According to Eqs. (4)-(6), the entropy production 
would then be positive. However, Hamiltonian systems are not expanding. 

Another proposition has been discussed in the context of the recently 
introduced thermostatted systems) 1 s) In these systems, the trajectories are 
attracted toward phase-space regions where the flow is contracting on 
average, 0x .  F. In such systems, there is a negative entropy production. 
Indeed, since trajectories converge to a strange attractor which has a frac- 
tal dimension lower than the total phase-space dimension the probability 
distribution ft(X) is more disordered at the initial time than at following 
times. As a consequence, the Gibbs entropy--which is a measure of 
disorder--decreases. To avoid this difficulty, a hypothetical mechanism of 
entropy conservation between the system and the thermostat has been 
assumed: t4) S~. total = SG,  system At- SG,  thermostat = constant. If we now consider 
the so-defined entropy of the thermostat there is a change of sign in its time 
variation and the entropy production of the thermostat should thus be 
positive. Although interesting and useful for the computation of some ther- 
modynamic quantities, this reasoning is unsatisfactory as an explanation of 
the origin of a positive entropy production. 

This discussion shows that the propositions based on the assumption 
0 x - F r  present shortcomings to explain the increase of entropy in 
consistency with the known laws of microscopic motion. 
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The purpose of the present paper is to reconsider the problem of 
entropy production in the light of new results demonstrating that the 
invariant measure of open volume-preserving systems may become singular 
if nonequilibrium conditions are imposed at arbitrarily large distan- 
ces.i14, 15) These new results have been obtained by a study of deterministic 
diffusion in strictly volume-preserving systems of large spatial extension 
such as the Lorentz gas fl6) and the multibaker map. 117) This study has 
yielded to the explicit construction not only of the hydrodynamic modes of 
diffusion but also of the nonequilibrium steady states corresponding to 
gradients of concentration under flux boundary conditions. These non- 
equilibrium steady states are defined on the complementary set of the fractal 
repeller of the chaotic-scattering approach ~17-22) and, therefore, have the 
plain phase space for support. In finite systems, such nonequilibrium steady 
states are given by invariant measures which are different from the equi- 
librium Liouville invariant measure but which are absolutely continuous 
with respect to the Liouville measure. In the limit of large systems 
where the concentration gradient is maintained to a fixed value, the 
nonequilibrium invariant measure becomes singular with respect to the 
Liouville measure. ~ 14, 15~ For instance, in the multibaker map, Tasaki and 
Gaspard have shown that the invariant measure corresponding to a non- 
vanishing gradient of concentration is given in terms of the nondifferen- 
tiable Takagi function in the limit where the gradient is imposed at 
boundaries which are more and more separated while keeping constant the 
gradientJ 14) The convergence of the invariant measure--which remains 
absolutely continuous as long as the boundaries are finitely separated--to 
the singular measure is very rapid in the large-system limit because it is 
determined by the Lyapunov exponential instability. In this way, the 
absolute continuity disappears exponentially fast below tiny scales in phase 
space. This result is of crucial importance for the following arguments. 

Indeed, if the invariant measure becomes singular in some limit, we 
are no longer allowed to use the Gibbs entropy because this entropy is 
defined with the probability density which only exists if the associated 
measure v is absolutely continuous with respect to the Liouville measure 
f(X)=dv/dX. The fine-grained Gibbs entropy is thus no longer 
appropriate if the probability density f does not exist. Under such cir- 
cumstances, it is required to consider a coarse-grained entropy and the 
constancy of this coarse-grained entropy is in question. 

From this remark, we develop in detail the calculation of the produc- 
tion of the coarse-grained entropy in the case of the multibaker model. We 
show that the singular character of the nonequilibrium invariant measure 
implies that the coarse-grained entropy production reaches the well-known 
positive value given by irreversible thermodynamics if the large-system 
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scaling limit is carried out before the fine-graining limit. We explain that 
the result should be expected to hold in general chaotic volume-preserving 
systems of large spatial extension. By this reasoning, irreversible thermo- 
dynamics turns out to be compatible with the volume-preserving property 
8x" F = 0 and there is no need to assume ~x" F ~ 0. 

The plan of the paper is as follows. In Section II, we describe the 
problem of entropy production by going back to the original definition of 
entropy production in the thermodynamics of irreversible processes. In Sec- 
tion III, we introduce the open volume-preserving systems and we discuss 
the choice of appropriate boundary conditions. A probability measure is 
defined in such open systems with infinitely many particles in terms of a 
Poisson suspension over the dynamical system. The time evolution of this 
probability measure is then formulated. In Section IV, we define the coarse- 
grained entropy we use in the following and we show that the definition is 
consistent with the standard equilibrium entropy per unit volume. The time 
evolution of this coarse-grained entropy and the corresponding entropy 
production are then defined. In Section V, we apply our definitions to diffu- 
sion in the multibaker map. We show that the coarse-grained entropy 
production is determined by the nondifferentiable Takagi function in the 
large-system limit and that it gives precisely the entropy production 
expected from irreversible thermodynamics. Conclusions are drawn in 
Section VI. 

II. E N T R O P Y  P R O D U C T I O N  IN IRREVERSIBLE 
T H E R M O D Y N A M I C S  

The concept of entropy production is introduced in the thermo- 
dynamics of irreversible processes, t9 12) In order to identify in deterministic 
dynamical systems a quantity like the entropy production, we shall first 
present the phenomenological entropy production and discuss its proper- 
ties which should be recovered in the deterministic approach. We restrict 
ourselves to the case of diffusion because we intend to discuss the com- 
parison with deterministic models of diffusion such as the Lorentz gas and 
the multibaker map. 

A first remark is that the thermodynamics of irreversible processes is 
a macroscopic theory where the quantities are defined as averages over 
volumes of size larger than the mean free path of the fluid particles. In the 
case of the diffusion of tracer particles in a fluid, the density evolves in time 
according to the phenomenological equation 

O,p = D V2p (7) 
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where V = 0r denotes the gradient with respect to the positions r = (x, y, z) 
of the physical space and where D is the diffusion coefficient which is here 
supposed to be constant in space. This phenomenological equation is 
obtained from the conservation law of tracer particles, a,p + V. j = 0, where 
the tracer current is given by Fick's law, j = - D  Vp. If the tracer concen- 
tration is not too high we may suppose that the tracer particles and the 
fluid form an ideal solution so that the entropy S is given as the integral 
of the entropy per unit volume or entropy density s: 

S = Iv p In POp dr (8) 

Po being a constant reference density for which S(po)= 0. The time evolu- 
tion of the entropy (8) can be derived from the diffusion equation (7) as 

d S = _ f  dA.J, ,+ fva,.dr d~S+d~S 
dt o v ' " = & dt 

(9) 

in terms of the entropy current and entropy source 

Js =J In Po = ( - D  Vp) In P o (10) 
ep ep 

(Vp) 2 
a s = D  >~0 (11) 

P 

In Eq. (9), deS/dt is the flow of entropy at the boundaries 0 V of the system 
and diS/dt is the so-called entropy production inside the system due to the 
irreversible process of diffusion. This entropy production is always non- 
negative according to the 2nd law of thermodynamics: 

diS= I a,.dr>~O (12) 
dt v 

The entropy production vanishes at equilibrium and is positive away from 
equilibrium. In contrast, the flow of entropy may take positive or negative 
values depending on the gradient of concentration imposed at boundaries. 

In the following, we consider the underlying deterministic motion of 
atoms or molecules in the fluid in order to understand how the 2nd law of 
irreversible thermodynamics can emerge at the macroscopic level from the 
properties of the microscopic motion. 
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A. The Choice of the Boundary Conditions 

We suppose that the system of microscopic particles is volume- 
preserving and open. The openness of the system is very important if we 
want to conceive a process of the kind of those described by irreversible 
thermodynamics. As an example, let us consider an open Lorentz gas com- 
posed of a finite number of fixed disks forming a lattice of size L. As 
L ~ ~ ,  the lattice occupies the whole plane and becomes periodic. A point 
particle undergoes elastic collisions on the disks. This mechanical system 
has two degrees of freedom, is volume preserving, and conserves energy. If 
the lattice has a finite horizon (the horizon is the largest possible free flight 
for the point particle) the Lorentz gas is known to have a positive and 
finite diffusion coefficient. (~6~ This open Lorentz gas is a typical scattering 
system as studied in collision theory/18-2~ 

A statistical ensemble of copies of the system is introduced which 
corresponds to filling the phase space with a gas of infinitely many particles 
which are independent of each other. The time evolution of the statistical 
ensemble is governed by the Liouville equation (3) with extra conditions to 
describe the elastic collisions on the disks. Alternatively, the time evolution 
of the ensemble can be described by a Frobenius-Perron operator as 
shown elsewhere/~5~ Different boundary conditions can be considered to 
solve the Liouvillian dynamics in such systems: 

(1) Absorbing boundary conditions. (17 22) For such a condition, the 
particle density is supposed to vanish at the boundaries of the finite lattice 
for all times. This condition is equivalent to the escape of trajectories in free 
flight to infinity outside the scatterer. In this case, the number N, of 
particles inside the scatterer decreases exponentially to zero: 

N, --- No exp(-Tt) (13) 

in the double limit where the initial number of particles and the time 
become infinite: No ~ ~ and t ~  ~ .  Eq. (13) defines the so-called escape 
rate 7. From the viewpoint of thermodynamics, the preceding situation 
translates as follows. At the level of the phenomenological equation (7), the 
density at boundaries should be zero for all times: p, lay=0. The diffusion 
equation is solved with this boundary condition to get 

p, -~ q~ exp(-Tt) ( t ~  oo) (14) 

822/'88/5-6-15 
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where q~ is the eigenfunction of 

D V2cp = - yq~ (15) 

associated with the smallest eigenvalue y >~ 0 and satisfying: cplo v = 0. If we 
replace this solution into the phenomenological entropy source (11) we get 

(Vp) 2 (V~) 2 
a,.=D "~ exp ( -T t )  D ~ 0  (16) 

p cp 

which vanishes when t ~ oo. As a consequence, this situation does not 
allow us to identify the thermodynamic entropy production as a stationary 
property because the entropy source vanishes together with the density 
itself due to the escape of all the particles. This argument indicates that the 
escape rate may not be identified with the thermodynamic entropy produc- 
tion (at least in the absence of an external field) (cf. refs. 5 and 6). 

In order to properly identify the thermodynamic entropy production, 
we consider the following boundary conditions: 

(2) Flux boundary conditions. ~14' 171 We suppose that the Lorentz- 
type scatterer is submitted to a continuous flux of particles (see Fig. 1 ). For  
instance, a flux of density p_  of incoming particles reaches the left-hand 
side of the scatterer while a flux of density p + > p_  reaches the right-hand 
side. The particles evolve according to the laws of mechanics. If the flux is 
continuous in time an invariant measure will establish itself after some time 
at the level of the statistical ensemble. In such open and infinite systems, we 
have thus to define a measure vt at time t which gives the local density of 
particles in phase space such that vt(B ) is the number of particles in the 
phase-space region B at time t. We notice that this measure is no longer 
normalizable because there is an infinity of particles in the whole system: 
v,(F) = oo. Thanks to the flux boundary conditions, a steady gradient of 
concentration can be maintained in these open systems, which is a 
favorable situation for a possible identification of an entropy production. 
Indeed, the phenomenological entropy source (11) and, thus, the entropy 
production (12) are now positive and stationary since 

,v ,2 , 
cR=D = D  ,-, (17) 

x + c  P p +P+ - P  x 
L 

where c is a constant. 
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Fig. 1. Schematic representation of a finite Lorentz gas under flux boundary conditions. The 
finite Lorentz gas is composed of a slab of width L cut out of the infinite Lorentz gas. This 
slab of disks forms a scatterer for a gas of independent particles arriving at the left-hand 
boundary with a density p_  and at the right-hand wall with a density p +, creating a gradient 
V?p = ( I / L  )( p ~ - - p  _ ) e , .  of concentration. 

B. A Probability Measure for Infinite Open Systems 

We proceed with the construction of a probability measure Pt for the 
Poisson suspension over the dynamical system of measure v,. ~23~ This 
Poisson suspension is a dynamical system on a phase space which is a 
direct product of infinitely many copies of the original phase space 
F: Jr = @ i ~ F i .  A point in this phase space Jg defines an ensemble of 
copies of the system: Y= {Xi} i ~  J L  We can define subsets of the phase 
space such that the number of copies { Xi} inside the region B is fixed to 
the integer k 

Csk = { Ye Jr Number( Yc~ B ) =  k} (18) 



1224 Gaspard 

The probability measure of the Poisson suspension corresponding to the 
measure v is defined by ref. 23 

Iv(S)]  k 
l~(C~k) = k! exp[ - v(B)] 

and 

fl(CBIklOCB2k2)=fl(CBIkl)fl(CB2k2 ) if Bt (",B2= ~ (19) 

To show that this measure is a probability, we consider a partition { B~} of 
some subset A of the phase space: A = 0~ Bi c F with B~ n By = ~ for i # j. 
Each cell B~ of the partition contains a certain number of points of Y given 
by Number( Y ~ Bi) = ki ~ { 0, 1, 2, 3,...}. The partition induced by { B~} in 
the phase space J / i s  constructed as 

U C~8,k,I with CIs,k,I = Cs, k~ C~ C~2k2~ C83k~ n ... ~ Cs.,km (20) 

where {k~} denotes a configuration in which the number of particles in 
each cell B~ is equal to a given integer ki. The measure of one element of 
the induced partition, i.e., the measure of some configuration is obtained by 
applying the definition (19). Summing over all the configurations {k~}, we 
get 

lz(C~e,k,~)= f i  ~ [v(B~)]-------~kexp[-v(Bt) ] = 1 (21) 
k! /k~} i= 1 k =0 

SO that the measure/~ is normalized to unity at all times t and is thus a 
probability measure in this sense. 

The time evolution under a specific dynamical system (with discrete or 
continuous time) is defined by the mapping between the initial condition 
X0 and the current point X, of the trajectory as 

X, = ~ ' X o  (22) 

Whereupon, the measure v, evolves in time according to 

v,+~(~) = v,(~ 18) (23) 

which induces a corresponding evolution for the probability measure kt, of 
the Poisson suspension. Let us remark here that the flux boundary condi- 
tions break the time-reversal invariance of the steady-state measure v~ 
under nonequilibrium conditions, in contrast to the Liouville equilibrium 
measure which is time-reversal invariant. 
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IV. THE COARSE-GRAINED ENTROPY 

A. Definition 

Thanks to the probability measure of the Poisson suspension, we are 
now able to define a coarse-grained entropy for open systems with an 
infinite number of particles. 

The entropy of the measure/z corresponding to the partition { B~} of 
A in the original phase space F is defined in terms of the probabilities of 
the elements of the induced partition in J / .  As a consequence, this coarse- 
grained entropy characterizes the disorder of the probability measure/L in 
the sense of Boltzmann. When all the cells B i have the same given size e we 
denote the coarse-grained entropy as S,. Our definition is thus 

(24) 

We notice that more systematic definitions of coarse-grained entropy 
are possible such 

S~= Inf S({B~}) or S,,= Sup S({B~}) (25) 
d i a m  B s ~< ~: d i a m  B i >1 

for instance but, for simplicity, we shall use the definition (24) where all 
the cells are identical. We also mention that a connection exists between 
the coarse-grained entropy and the so-called e-entropy, as discussed 
elsewhere, t24) 

Using the definitions (19) and (20), Eq. (24) becomes 

S~=-Z ~ /~(Cs, k)ln~(CRi,) (26) 
i k = 0  

and 

e 
St = ~ v(Bi) In ~ + ~(e) (27) 

i 

where the rest ~(e)=~i (9[~(Bi )  2] is important only if v(Bi)>>l but 
vanishes for e ~ 0 even if the measure is singular. This rest plays no role in 
the following argument and may be considered negligible but we shall keep 
it for rigor. 

In the case where the measure v is absolutely continuous with respect 
to the Liouville measure, the associated density exists: f ( X ) =  dv/dX. The 
measures of the cells are given by v(Bi) ---f(Xi) AX where Xi is a point 
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inside B, according to the mean theorem of Riemann integration theory 
and where JX  is the Liouville measure of the cells B~. In this case, the 
coarse-grained entropy is given by 

(e) 
S,:= ln~-~ fAf(X)dX--~AdXf(X)lnf(X)+(9(AX)+~(AX) (28) 

The second term is nothing else than the Gibbs entropy (1). The first term 
diverges for A X e 0 .  Since ~rfdX=l for a closed system with a nor- 
malized measure the first term remains constant in time and may be dis- 
regarded. This term fixes the famous constant of entropy in respect of the 
third law of thermodynamics. This term is very important to establish the 
correspondence with the entropy of quantum statistical mechanics where 
should be fixed according to AX =ASqAfp =(2nh)Jl Thanks to the pre- 
vious definition (24), we recover the usual expression of the equilibrium 
entropy per unit volume for instance in an ideal gas where 

�9 In eS/Z(2nmksT)3/2 
S(~.v~ = p pA3qA3 p +(9(A3qA3p) (29) 

The previous definition is therefore entirely consistent with standard equi- 
librium statistical mechanics, t25) 

B. The Time Variation of the Coarse-Grained Entropy 

The coarse-grained entropy (27) of a domain A evolves in time and we 
are interested in its time variation, i.e., in the difference between its values 
at two successive instants of time separated for instance by a unit time: 

AS~ = S~(t + 1; A) -- S~:(t; A) 

I e v,(Bi) e ] l n - -  + ~ ( e )  (30) = ~, v,(~ 'B~)In v,(~ ~Bi) v,(Bi) 
Bic A 

If the measure v, is absolutely continuous with respect to the Liouville 
measure we obtain 

(IA I. ) eA------~+O(AX)+~(AX ) (31) + - dX f,(X) lnf,(X ) 
m o u t  
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where we used the identity 

that the difference between the integrals over the preimage of A and over 
A itself is equal to the difference between the integrals over the domain Ai, 
which enters A and the domain Aou t which exits A. 

In a volume-preserving system, the Jacobian of the mapping �9 is 
equal to unity so that there is no term in (31) which could be identified 
with the entropy production. However, this holds as long as the density 
exists so that the terms (9(AX) may be neglected. This is no longer the case 
for singular measures, which is the cornerstone of our argument. 

Let us proceed with the separation of the variation of the entropy into 
an entropy flow and an entropy production in analogy with Eq. (9). The 
entropy flow can be naturally defined as the difference between the coarse- 
grained entropies of the domains ingoing and outgoing A 

AeS~=S,:(t;Ai.)-S~.(t;Aout)=S~,(t;~-IA)-S~,(t;A) (33) 

where the last identity follows from Eq. (32). 
The entropy production can now be defined as 

~ i S e  = ~ S e - - ~ e S  e (34) 

In the next section, we shall apply the previous definitions to a simple 
model of diffusion. 

V. ENTROPY PRODUCTION IN THE MULTIBAKER M A P  

A. The Model 

The multibaker map is a model of deterministic diffusion which can be 
seen as a caricature of the collision dynamics of the Lorentz gas. (14' 17, 19) 
Indeed, the dynamics of the elastic collisions of a particle from disk to disk 
is given by a Birkhoff map which governs the coordinates of the successive 
impact points and velocity angles at collisions in the Lorentz gas. The 
Birkhoff map is area-preserving and of hyperbolic character. The 
Lorentzian dynamics can be simplified while keeping its two aforemen- 
tioned essential properties. We replace the Birkhoff map of the Lorentz 
gas by transformations of the baker type between several squares which 
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L-1 L ! L+I L+2 L+3 I 

Fig. 2. Representation of the action of the open multibaker map in its phase space which is 
composed of an infinity of squares. The map  acts like a baker transformation on the chain of 
the squares 0 ~< n ~< L and by left or right translations outside the chain up to infinity. 

correspond to the different disks of the Lorentz gas. Points are mapped 
from square to square like particles undergoing collisions from disk to disk, 
which results in a deterministic motion of diffusion. The multibaker can 
also be viewed as a deterministic realization of a symmetric random walk. 

Since we consider finite scatterers we suppose that the transformation 
is of the baker type only on a finite number of squares forming a chain of 
length L + 1. At both ends of the chain, particles may exit or enter the 
chain in free motion with velocities + 1 or - 1. This is realized by a simple 
composition of translations to the left or the right in the half squares 
extending from both ends to infinity (see Fig. 2). The phase space is there- 
fore given by (n, x, y) where 0 ~ x, y ~< 1 and - co < n < + oo is an integer 
labeling the square where the particle currently lies. The multibaker map is 
thus ~ 14~ 

�9 (n, x, y) 

(n-l,2x, 23, O~<x<l /2 ,  + l < ~ n < < . L + l  

= (n+l,2x-l ,Y~ 1), 1/2<~x<~l, ~ l ~ n ~ Z ~ l 

(n-l,x,y), O~<x<l /2 ,  n~<O or L + 2 ~ < n  

.(n+l,x,y), 1/2~<x~<l, n ~ < - 2  or L<~n 

(35) 

B. Flux Boundary Conditions and the Steady-State Measure 

A flux of particles is supposed to flow continuously across the chain. 
The particles in the half squares, 1/2 ~< x ~< 1 with n ~< - 1, arriving from 
infinity on the left-hand end are assumed to be uniformly distributed with 
the density p _, while those in the half squares, 0 ~< x < 1/2 with L + 1 <~ n, 
arriving on the right-hand end have a density p +. 
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As a consequence of the chaotic time evolution inside the chain, there 
is a fractal repeller in the squares O<~n<~L, which has the partial 
Hausdorff dimension 114) 

d n = l + ~  l ~ 1 ( zc ) 2 
21n21ncos~-~=l-4-- i - f f~n2 ~ - ~  +(9(L 4) (36) 

Therefore, there are three types of orbits which exit the scatterer (i.e., for 
n ~ < - I  and L +  1 ~<n): 

(1) The orbits which entered at the left-hand end: The density is p 
in their vicinity. 

(2) The orbits which entered at the right-hand end: The density is 
p + in their vicinity. 

(3) The orbits of the unstable manifolds of the repeller. The unstable 
manifolds are segments of horizontal lines which separate the regions of 
density p + from those of density p .  

Since the repeller is fractal, it is also the case for its unstable manifolds 
so that the measure is very complicated on the half squares which exit the 
chain. However, the density always exists since it is equal to either p + or 
p_ ,  except on the set of the unstable manifolds which is of zero Lebesgue 
measure. 

In the limit L ~  ~ ,  the partial Hausdorff dimension (36) of the 
unstable manifolds tends to the unit value. We understand that, as a 
consequence, the invariant measure becomes singular because the density 
alternates between the values p + over thiner and thiner regions across the 
phase space. 

Since we expect singular measures in some limit we define the 
cumulative distribution function associated with the measure v, as r 

Gt(n, x, y) = v,(n, [0, x[ | [0, y[)  (37) 

which exists as a function even when the density does not exist. With this 
definition, Tasaki and Gaspard have shown that the invariant measure 
corresponding to the gradient of concentration 

Vp = P +  - P -  
L + 2  (38) 

is given by the cumulative function: 

G~(n, x, y) = x [ p . y  + (Vp) T.(y)]  = xg. (y)  (39) 
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where 

p.  = (Vp)(n + 1) + p (40) 

is the average density in the nth square and where { T,(y)} are the incom- 
plete Takagi functions defined by the iterations 

~�89 Tn_,(2y) + y, 
T"(Y)=[�89 l(2y-- 1)+ l - - y ,  

O <y<�89 
(41) �89 

with the boundary conditions, T _ I ( y ) =  TL+ I(Y)=0'(14)The incomplete 
Takagi functions are differentiable almost everywhere because it is the case 
for the cumulative function (39) since the corresponding density exists 
according to the above reasoning. Let us mention here the property that 
T,,(0) = Tn(1) =0.  

However, in the limit where L ~  ~ and ( p + - p _ ) ~  ~ keeping 
constant the gradient (38), the incomplete Takagi functions converge to the 
Takagi function defined by the following iteration Iz6) 

T ( `  f�89 y, 
Y) = ~�89 1)+ l - - y ,  

0 ~< y < �89 (42) 
�89 

The convergence is exponentially fast like ~ 14) 

Sup I T . ( y ) -  T(y)I ~2( -l~minln'L n) (43) 
2J 

0 ~ , ~ < 1  

so that Tn(y ) = T(y) + (9(2 z/2) in the middle of the chain at n = [L/2].  
The Takagi function is nondifferentiable almost everywhere because its 

derivative with respect to y is formally given by ~5~ 

L ~yy (y) = ~[fl~(y)] (44) 
r = 0  

where f l (y)=2y ( m o d l )  is the Bernoulli map of the interval and 
~(y) = ___ 1 if y < 1/2 or y > 1/2. The derivative of the Takagi function is 
thus given by a sum of plus and minus ones corresponding to the jumps 
of the particle to the right (~ = + ) or to the left (~ = - ) under the inverse 
multibaker mapping �9 1. Figure 3 shows the first few iterations of (42) 
where we observe that, at the rth iteration, the function has already 
converged to its limit values at the points y=m/2  ~ with m =0,  1, 2 ..... 2L 
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These points can be assigned to symbolic sequences with symbols o93 = 0 
or 1 whether ~ = + 1 or - 1  according to 

( D  I 0 )  2 ( D  r 

Y~o, ...... = ~ - + ~ - +  ...  + 2- 7 (45) 

Using the construction of Fig. 3, we deduce the following properties of the 
Takagi function: 

and 

( 1) 1 
T y.,,, ...... + ~  - T(y., .  ...... ~)=2- S (46) 

T y,,, ...... + -T(y , , , ,  ...... 3) =2--7 (47) 
o~ I � 9  0 )  3 

Both properties will be used in the following. We notice that the Takagi 
function has no second derivative with respect to y. If it had, the second 
derivative would decrease like 2 2r in contradiction with Eq. (46). 

In the limit L ~ 0% we moreover observe that the invariant measure 
(39) remains absolutely continuous with respect to the Lebesgue measure 
in the unstable direction x. This is because an initially regular measure is 
stretched in the unstable direction under the time evolution and, thus, 
converges to a measure which is absolutely continuous in this direction. 
The measure is furthermore uniform in the unstable direction because the 
stretching is uniform in the multibaker map. In contrast, the measure (39) 
becomes singular in the stable direction because of the difference between 
the ingoing densities imposed at both ends. Formally, the density in the 
middle of an arbitrarily long chain is given by 

f o ~ ( n , x , y ) = O ~ y G ~ , ( n , x , y ) = p , , + ( V p )  ~. ~[fl~(y)] (48) 
r - - 0  

where the last term is a discrete form of the integral over the velocity of 
the diffusive particle: ~o ~ v(~ 'X)dr .  ~5~ In the form (48), we recognize 
a steady-state measure of the type introduced by Lebowitz and 
McLennan. ( 2 7 ,  2 8 )  

C. The Coarse-Grained Entropy Production 

The presence of this singular term is at the origin of a positive entropy 
production, as shown below. 
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Cons t ruc t ion  of the Tagak i  function by successive i te ra t ions  accord ing  to Eq. (42): 

l im 7 ~ ( y )  = 7"(y), the seed function being zero. 
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We consider the coarse-grained entropy production (34) in the nth 
square of the chain, we denote by A. We take the cells Bg of size Ax in the 
unstable direction x and of size 

1 
A y = ~  (49) 

in the stable direction y to take advantage of the symbolic decomposition 
(45). In this case, the role of e is played by (Ax, Ay). The number of cells 
(Ax, Ay) in the unit square A is equal to 1/Ax in the unstable direction x 
and to 1lAy = 2 ~ in the stable direction y. From Eq. (39), we infer that the 
measure of the cell 

Bi= [x, x + Jx[ | [y,,,t ........ y,,,, ....... + Ay[ , (50) 

is 

v(B i )  = ~ x  A g . ( o ~ ,  . . .  co~) 

with Ag,,(co~ ... ~o~) = g,,(y,,~, ...... ~ + Ay) - g,,(y,,), ...... ~) 

with the property that 

(51) 

Agn(co, . ..~o~) = gn(1)-  g,,(O) = pn (52) 
o ~  I � 9  r  r 

In order to calculate the time variation (30) of the coarse-grained 
entropy, we must consider the cells B~ of size (Ax, Ay) in the square 
A=(n,  [ 0 , 1 ] |  [0,1])  as well as their preimages �9 IBi of size 
(Ax/2, 2 Jy) which belong to the half squares ~ - t A  = ( n +  1, [0, 1/2[ | 
[0, 1])w ( n - 1 ,  [1/2, 1] | [0, 1]) (see Fig. 4). The time variation of the 
coarse-grained entropy at the steady state is thus given as 

AS~=[ (fl-~,2 Ay)-entropy of * - ' A ]  - [ ( A x ,  Ay)-entropy of A] (53) 

with the coarse-grained entropy (27). 
On the other hand, the entropy flow (33) is 

A,,S,: = [(Ax, Ay)-entropy of ~ -~A]  - [(Ax, Ay)-entropy of A] (54) 

As a consequence, we obtain the entropy production (34) as 

A.S, ~.=[[\2,(Ax 2Ay) -en t ropyof*  ' A ] - [ ( A x ,  Ay)-ent ropyof~- 'A](55)  
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Fig. 4. Action of the multibaker map on three successive squares of the chain and on the 
cells {B~} of a (Ax, xly)-partition of the nth square taken as the domain A in Eq. (56). 

or, by using the stationarity that implies A S , = 0  in Eq. (53), we get 

A i S~: = [ ( Ax, xly )-entropy of A ] - [ ( 2 Llx, ~ )-entropy of A 1 (56) 

We now calculate the entropy production (56) using the expression 
(27) for the coarse-grained entropy with the above choice of the cells Bi. 
According to the uniformity in the x-direction, the sum over all the cells of 
size Ax in the interval [0, 1 ] contributes by a factor 1/zlx, which cancels 
the factor xlx. Besides, we observe that the cell col ...~o~ is composed of the 
two cells co~...~o~0 and col.--~o~l, so that their probability weights add 
like d g n ( 0 9 1  . . .  f o r )  = dg,,(o~ I ... o9~0) + Ag,(~o 1 ... o9~ 1). The property (52) 
is moreover used to eliminate the factors e/zlx in the logarithms. Finally, 
the coarse-grained entropy production of the multibaker is explicitly 
obtained as 

I 2 Agn(~o 1 ... o9~0) 
AiS,,= ~ z~g,(o91...og~O) lnAg,(o91...co~O)+Ag,(col...og~l ) 

(~1 "" " ( ~  

2Ag,(~ol ...o9~1) 1 
+Ag"(~ "'" ~ Ag,(o91 ~ . - ~ 0 ) +  A g ~  ...o9~1) (57) 
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Fig. 5. The coarse-grained entropy production (57) calculated numerically for a multibaker 
chain of length L = 50, a unit gradient Vp = 1, and p_  = I. The entropy production is depicted 
as a function of T = log2(l/Ay), for different positions n along the chain. 

where we have taken the limit Ax ~ 0 to eliminate the term of C(Ax) which 
plays no role in our argument because the measure remains regular in the 
unstable direction x. 

The first remarkable property of this entropy production is its 
positivity 

AiS~.=Z�9 a l n a ~ - - ~ + b l n a  b >10 (58) 

which follows from the concavity of the function z In z [i.e., (d/dz)2(z In z) 
>~0]. 

We have numerically calculated the expression (57) for a multibaker 
chain of length L = 50. Figure 5 shows AiS~ as a function of r = logz(1/Ay). 
We observe that AiS,~ is approximately constant with respect to r. There- 
fore, the entropy production as a function of Ay displays a plateau at a 
positive value which depends on the position n along the chain. In the case 
of Fig. 5, we have taken p -- 1 and Vp -- 1 so that the mean density in the 
nth cell is p , = n  +2.  Figure 6 shows AiS~: as a function of the position n, 
for different values of Ay. 

We then compare with the behavior expected from the phenome- 
nological entropy production in the nth square of unit length, which is 
given by 

(Vp) 2 1 
z~iSph . . . . .  = D  - (59) 

p ,  2(n + 2) 
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Fig. 6. The  same  e n t r o p y  p r o d u c t i o n  as in Fig. 5 for  a m u l t i b a k e r  c h a i n  o f  l eng th  L = 50 b u t  

dep ic ted  here  as a func t ion  o f  the  pos i t ion  n, for  different  values  o f  Ay. The  d a s h e d  line 

represen ts  the  p h e n o m e n o l o g i c a l  e n t r o p y  p r o d u c t i o n  (59). 

because the diffusion coefficient is D = 1/2 in the multibaker. In Fig. 6, we 
observe a remarkable agreement between both curves except at the ends of 
the chain. The decrease of the coarse-grained entropy production at the 
ends is explained by the fact that the density is there constant to the values 
p+ over large parts of the square so that Ai&. tends to zero more rapidly 
at the ends than in the middle of the chain as Ay--, O. The critical value of 
Ay below which AiS~ tends to zero depends on the position n along the 
chain in a way which is determined by Eq. (43) as 

Ay C ~ 2 min(,,. L--nl (60) 

Hence, the critical scale decreases exponentially fast as L, n ~ ~ due to the 
Lyapunov instability of the dynamics. For  a fixed value of Ay, we should 
thus observe the vanishing of the coarse-grained entropy production only 
in some boundary layers of the order of the inverse Lyapunov distance: 
nc ~ (In 2) J. Away from these small boundary layers, the coarse-grained 
entropy production reaches a positive value we shall now calculate. 

We suppose that we are in the middle of the chain at values of Ay 
above the critical value (60) so that the incomplete Takagi functions in 
(39) can be replaced by the limiting Takagi function. In Eqs. (57)-(58), we 
set a = m + c5/2 and b = m -  ~/2 and we expand in Taylor series of dim to 
get 

2 1 
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Ay A Ta + A T b and 
m = p . - ~ + ( V p )  2 d=(Vp)(ATa-ATb)  (62) 

where 

1 
ATa= T(yo~, ..... ~+~-~-7)-T(Yo,, ...... ~) 

ATb= T(y,. ,  ...... + l ) - T ( y , o ,  ...... + 2 1 ~ )  (63) 

We can here use the properties (46) and (47) of the Takagi function which 
imply that 

1 
AT. - AT h = ~ = Ay (64) 

E (AT~ + ATb) 2 = ~ = Ay log2 ~ -  (65) za y 

and, moreover, the property that Z (A Ta + A Tb) = T(1 ) - T(0) = 0. Expand, 
ing in series of (Vp)/pn, we finally obtain 

AiSe(Vp)2, (Vp) 4 //1 1)  [(Vp) 6] 
2pn +--~-p.3 ~g+l~ +OL--~--~5 J (66) 

for Ay > Aye. We notice that, if the Takagi function was twice differentiable 
Eq. (64) would behave like Ay 2 instead of Ay, so that the leading term of 
Eq. (66) would vanish as Ay ~ O. 

The remarkable result is that the leading term is precisely the positive 
entropy production expected from irreversible thermodynamics. The next 
term is a correction which is small like (Vp) 4 and which slowly increases 
as Ay ~ Aye. This behavior is observed in Figs. 5 and 6: Near the left-hand 
end of the chain where P n is small enough, we observe a slow linear 
increase of AiS~ versus log2(1/Ay) in Fig. 5. This increase becomes negli- 
gible where P n is larger. We emphasize that these results are entirely due to 
the Tagaki function and to its nondifferentiability, which therefore controls 
the positive entropy production. 

822/88/5-6-16 
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VI. C O N C L U S I O N S  

In this paper, we have revisited the problem of entropy production in 
volume-preserving system under steady nonequilibrium conditions. 

We have supposed that the system sustains a diffusion process and is 
submitted to flux boundary conditions. With such boundary conditions, 
the invariant measure is no longer the uniform Liouville measure. Indeed, 
the invariant measure at a phase-space point X e F has the density of 
the boundary point X h e aF from which the point X is issued under time 
evolution: X = ~'Xh. In the limit where fixed nonequilibrium gradients are 
imposed at arbitrarily large distances, arbitrarily small subsets of phase 
space contain points coming from almost every point of the boundary 
OF so that the density varies arbitrarily fast and the measure becomes 
singular. These asymptotic invariant measures corresponding to non- 
equilibrium steady states have been known since works by Lebowitz and 
McLennan.127.28) They are given as Zubarev local integrals of motion ~15' 29) 
(see also ref. 30). In the example of the multibaker map, the cumulative 
function of these measures is expressed in terms of the nondifferentiable 
Takagi functionJ 14) The singular character of these steady-state measures 
forces us to use a coarse-grained entropy instead of the Gibbs entropy 
which only applies to regular measures. We have then showed that the 
coarse-grained entropy production is consistently positive and, above all, 
has the behavior expected from irreversible thermodynamics for diffusion. 
Our result can be formulated as 

lim lim lim (~p)2AiS,:=D>O (67) 
t : ~ 0  (Vp) /p~O L ~ o o  

where the limits are not commutative. Because the limit L ~ ~ of a large 
chain has to be taken before the fine-grained limit e ~ 0 we should under- 
stand the entropy production as an emerging property appearing in the 
scaling limit of large systems. We emphasize that the previous result is 
independent of the particular coarse graining because the entropy produc- 
tion defined in (67) does not vanish in the fine-grained limit. This is in 
contrast with the usual coarse-graining considerations which depend on the 
particular partition used in the coarse graining. The nontrivial fine-grained 
limit is here due to the singular character of the invariant measure, which 
is the new result. 

We notice that the singular character of the invariant measure under 
nonequilibrium conditions appears very rapidly in large systems because of 
the convergence property (43). We can translate this rapid convergence for 
a fluid of particles of diameter d as follows. From the analogy with a 
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Lorentz gas, the transition from one square of the multibaker to neigh- 
boring squares corresponds to the free flight of a particle from a collision 
to the next one, i.e., to a mean free path f = 1/(ptr) where p is the particle 
density and tr = zcd 2 the collision cross-section. At each collision, a pertur- 
bation 60~ on a velocity angle is amplified like fi~ ~ (2E/d) 6~. At a distance 
z =mE of m mean free paths from the wall, about m collisions have 
occurred so that the critical scale below which the absolute continuity is 
hidden is A~c ~ ( d / 2 f ) " .  Expressed in terms of the distance z from the wall, 
the critical scale would be As,, ~exp( -z2 )  where 2 ~ (I/E)ln(2f/d) is the 
Lyapunov exponent per unit distance. The width of the boundary layer 
where the coarse-grained entropy production should be smaller than its 
bulk thermodynamic value should thus be zc ~ f / l n ( f / d ) .  It is only beyond 
this boundary layer that we may expect the coarse-grained entropy produc- 
tion to reach its thermodynamic value. We notice that the scale where the 
absolute continuity of the nonequilibrium invariant measure is hidden 
becomes exponentially small as z >> z,. toward the bulk of the fluid because 
of the Lyapunov dynamical instability. Therefore, the bulk behavior of the 
nonequilibrium steady state becomes essentially determined by the nondif- 
ferentiability of the Tagaki function or, equivalently, by the singularity of 
the Lebowitz-McLennan steady-state measures. For these reasons, we 
should expect that the results of the present work are general. 

We may conclude that we have here identified the appropriate 
mechanism at the origin of the thermodynamic entropy production in 
volume-preserving systems. 
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